Category: accidents

The Deadliest Theater Fire in History

The Deadliest Theater Fire in History

from Austin McConnell

The Windscale Nuclear AccidentWith the popular…

The Windscale Nuclear Accident

With the popularity of the HBO series “Chernobyl”, the Chernobyl disaster is once again entering the public consciousness, along with other infamous accidents such as Three Mile Island and Fukushima.  However ever since the beginning of the atomic age there have been a number of dangerous accidents and close calls. A brief perusal of wikipedia shows exactly how many have occurred.

https://en.wikipedia.org/wiki/Nuclear_and_radiation_accidents_and_incidents

In 1957 a less known accident occurred in the UK at the Windscale Nuclear Reactor in Cumbria. Throughout the 1950′s, the British nuclear program was put into overdrive in order to keep up with other nuclear powers such as the Soviet Union and the United States. Ever increasing demands and shortening deadlines resulted in a dangerous habit of corner cutting and half-assery which nearly led to a horrific disaster.

The Windscale reactor was not a power plant, but a site used for the production of plutonium and later tritium for Britain’s nuclear weapon’s program. The reactor was a graphite reactor designed to enrich uranium into weapon grade materials. Essentially it was a large block of graphite with channels drilled into it which would house uranium fuel rods. The rods would emit neutrons which interact with other rods, converting the uranium into small amounts of plutonium. Since this process results in a lot of heat, each rod was contained within an aluminum capsule with vanes designed to disperse heat and prevent the rods from overheating.

image
image

Once the uranium rod was depleted, the capsule would be pushed out of the reactor, where it would be dropped into a pool of water where it would cool off and later be collected to harvest plutonium.  The reactor was air cooled, with a system of fans that a constant stream of air through the reactor and out a chimney in order to prevent the reactor from overheating.

As the Cold War progressed higher demands were placed on the reactor to produce more and more plutonium, and with the invention of the hydrogen bomb, to produce tritium. In order to produce more weapons grade material, more heat needed to be generated. A simple solution was to shave off more and more aluminum from the fuel rod casings, you know, the things which were designed to help keep the rods from overheating. By 1957 most of the casing’s vanes had been removed and the casing was just a thin aluminum shell.

In the early operations of the reactor scientists and engineers discovered that the crystalline matrix of the graphite reactor, when bombarded with neutrons, could actually store kinetic energy (called the Wigner Effect), later releasing the energy in the form of a massive and unexpected heat increase which could be dangerous to the reactor. In order to counterattack this operators would initiate something called a Wigner Release, which involved purposely heating the reactor to release the stored energy. On October 7th, 1957 operators noticed the temperature of the core was rising, and thus conducted a Wigner Release. The reactor cooled with the exception of one fuel rod which was continuing to heat up. Another Wigner release was ordered. Little did they know that the thin aluminum casing of the fuel rod had fractured and caught fire. Over the next few days the temperature of the reactor slowly increased. On October 10th, the cooling fans were set to maximum in an attempt to cool the reactor. Instead the fans stoked the fire, causing the entire reactor to erupt in flames.

The first attempt to put out the fire involved removing the fuel rods, however the aluminum and uranium rods were orange hot and had fused with the graphite reactor. Next operators attempted to pump carbon dioxide into the reactor, but not enough CO2 could be pumped quickly enough to put out the flames. In a desperate decision, it was decided to put out the fire with water, which was an extremely risky option since the reactor was 1300 degrees centigrade, around 2,400 F. At that temperature, oxygen and hydrogen can split. With hydrogen being an extremely combustible element, it was feared that using water could lead to a massive explosion. Without any other options, the reactor was sprayed with a dozen fire hoses, but it was not enough.

It was only a matter of time before the reactor would melt down, causing the uranium and graphite to turn into molten magma which would melt through the floor, into the ground, and contaminate ground water with radioactive material. In the meantime large amounts of radioactive smoke was billowing out of the smokestack. Finally the lead manager, Tom Touhy, struck upon a simple yet brilliant solution. Fire needs oxygen, why not just shut off the air, seal up the reactor, and let the fire smother? The fans were turned off, the reactor was sealed shut, and operators watched with relief as the flames died out and the reactor cooled.

Windscale was lucky that day. Some of the radioactive material was removed by the smokestack’s air scrubbers, however most of the radioactive material was released into the air. Fortunately, there was an easterly wind that caused most of the radioactive material to be blown out into the Atlantic Ocean rather than over the neighboring town and countryside. As a safety precaution milk produced from around a 500 square kilometer area was dumped. Otherwise no people were evacuated, and no clean up efforts were made outside of the plant. The plant itself went back into operation shortly afterwards. Windscale was damn lucky. A study in 2010 concluded that plant workers suffered no health effects due to the disaster. Health data on nearby residents seems sparse, but it’s clear that Windscale avoided a Chernobyl level disaster. The Windscale accident was a close call that would demonstrate that manipulating the atom is a dangerous business, with no tolerance for corner cutting and half-assery.

Homer Simpson saves Springfield from a nuclear meltdown

The Bhopal Gas Disaster — The Worst Indu…

The Bhopal Gas Disaster — The Worst Industrial Accident in History

In 1969 the chemical company Union Carbide opened the Union Carbide India Limited (UCIL) plant in Bhopal, India, in the state of Madhya Pradesh. The plant specialized in producing pesticides for India’s growing modern agricultural sector. One important chemical for the production of the pesticides is Methyl Isocyanate (MIC), a highly toxic chemical which can cause skin burns, coughing,vomiting, dyspnea, pulmonary edema, emphysema, and in high doses asphyxiation. Since MIC was necessary for the production of pesticides, the plant had three large underground storage tanks full of the chemical.

image

Maintenance and repair of infrastructure and systems at the UCIL plant was woefully poor, especially noted were a number of leaks found on pipes used to pump MIC to different tanks and locations. It is through one or many of these leaks that water infiltrated the pipes and entered the main MIC storage tanks. The mixture of the water and MIC caused a reaction resulting in a great amount of heat and pressure. On the night of December 2nd/3rd a worker noticed cracks forming on the concrete cap of the one of the tanks, signalling a heavy build-up of pressure. Workers scrambled to prevent the tanks from bursting by activating three safety backups. First the gas was to be pumped into refrigerated secondary tanks, however this system had been dismantled in order to save money. The next safety system involved the gas being released into their, but filtered by an air scrubber which would remove all toxins before it was released into the environment. This system failed due to a malfunction. The last ditch safety system involved the gas being piped to a flare tower where it would be burned off, however this system was down due to maintenance.

Finally the pressure in the storage tanks burst, releasing a massive invisible cloud of MCI around Bhopal.  Warning alarms failed to sound in time, giving the people living near the plant no warning of the incoming cloud of death. Many people asphyxiated in their sleep. Other’s died in the streets right where they were standing. Hospitals were quickly overwhelmed by the injuring and dying. Throughout the night 3,787 people died and between 500,000- 600,000 suffered injuries, of which 38,000 were serious injuries and  3,900 were permanently disabling injuries. Many of these injuries included severe burns, blindness, and severe respiratory injuries. Over the next week, another 8,000 would die due to related illnesses or injuries. 

image

Furthermore, what is almost impossible to account for are the thousands upon thousands of victims who would suffer long term effects and chronic illnesses as a result of exposure. Such chronic illnesses include emphysema, chronic obstructive pulmonary disease, neurological damage, chronic skin diseases, miscarriages, and birth defects. Likewise environmental and economic damage is practically incalculable. 

In 1986 the Bhopal Union Carbide India Limited plant was dismantled. In 1988 Union Carbide agreed to pay a settlement of $470 million to the Indian government. Due to Indian bureaucracy payments to individual victims has been slow, and many have yet to see any compensation.

image